Magari fosse frode !
(..storia della colonnainfame)

Alessandro Giuliani



Il pregiudizio piu comune ¢ pensare di non avere pregiudizi.
La scienza inganna in tre modi: trasformando le sue proposizioni

in norme, divulgando 1 suoi risultati piu che 1 suo1 metodi, tacendo
le sue limitazioni epistemologiche

Nicolas Gomez Davila (In margine a un testo implicito)
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EDITORIAL

Fear of Failure: Why American Science
Is Not Winning the War on Cancer

Behind many stereotypes there is a truth. The stereotypical FEAR OF
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Why Most Published Research Findings

Are False

John P.A.loannidis

Table 4. PPV of Research Findings for Various Combinations of Power (1 — B), Ratio
of True to Not-True Relationships (R),and Bias (u)

1-f R u Practical Example PPV

0.80 11 010 Adequataly powerad RCTwith Iittle 085
basand 1:1 pre-study odds

095 21 030 Confimnatory meta-ana lysis of good- 085
quality RCTs

080 13 040 Meta-analysts of small Inconclusive  0.41
studies

0.20 1:5 020 Underpowered, butwell-parformed 023
phas2 111 RCT

020 1:5 080 Underpowerad, poorly performed 017
phasa 111 RCT

0.80 1:10 030 Adequately powerad exploratory 0.20
epklemiclogical study

020 1:10 030 Underpowered exploratory 012
epklemiclogical study

0.20 1:1,000 080 Discovery-ofentad exploratory 00010
research with massive testing

020 1:1,000 020 As In previous example, but 00015
with more limited blas (more

standardized)




19th century
scientist

I must find the
explanation for this
phenomenon in order
to truly understand

Nature. ..

21st century
scientist

I must get the
result that fits my
narrative so I can
get my paper into

Nature. .
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STATISTICAL ERRORS

BY REGINA NUZZO

PROBABLE CAUSE

A P value measures whether an observed result can be attributed to chance. But it cannot answer a
researcher’s real question: what are the odds that a hypothesis is correct? Those odds depend on how
strong the result was and, most importantly, on how plausibile the hypothesis is in the first place.

M Chance of real effect
Chance of no real effect

THE LONG SHOT THE TOSS-UP THE GOOD BET

19-to-1 odds against 1-to-1 odds 9S-to-1 odds in favour
Before the experiment
The plausibility of the S
hypothesis — the odds of 95% clhafl;\c::et of
it being true — can be no real efres
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mechanisms and other of real effect \ ! 1
expert knowledge. Three 1!
examples are shown here. \
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After the experiment M W kS

A small P value can make
a hypothesis more
plausible, but the
difference may not be
dramatic.
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focus

Deming, data and

observational studies
A process out of control and needing fixing

]]6 ’ Sigriﬁcance september2011

2011 The Royal Statistical Sodety

“Any claim coming from an observational study is most likely to be wrong.” Startling, but true. Coffee causes
pancreatic cancer. Type A personality causes heart attacks. Trans-fat is a killer. Women who eat breakfast cereal give
birth to more boys. All these claims come from observational studies; yet when the studies are carefully examined,
the claimed links appear to be incorrect. What is going wrong? Some have suggested that the scientific method is
failing, that nature itself is playing tricks on us. But it is our way of studying nature that is broken and that urgently
needs mending, say S. Stanley Young and Alan Karr; and they propose a strategy to fix it.
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P-value<0.05
Gotta be True!

Deer in Headlights. A deer caught in the headlights will
freeze, much like an author or reader seeing a p-value
< 0.05, and think there must be a real effect. Authors
can exploit this phenomenon intentionally or fool both
themselves and the reader. Illustration: Tom Boulton
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Amid a Sea of False Findings, the NIH
Tries Reform

By Paul Voosen

How do you change an entire scientific culture?

It may sound grandiose, but that is the loaded question now facing
the National Institutes of Health, the federal agency that oversees

and finances U.S. biomedical research.
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PERSPECTIVE

A manifesto for reproducible science

Marcus R. Munafd'?*, Brian A. Nosek?*, Dorothy V. M. Bishop®, Katherine S. Button®,
Christopher D. Chambers’, Nathalie Percie du Sert®, Uri Simonsohn?®, Eric-Jan Wagenmakers'®,
Jennifer J. Ware" and John P. A. loannidis™>""

Improving the reliability and efficiency of scientific research will increase the credibility of the published scientific literature
and accelerate discovery. Here we argue for the adoption of measures to optimize key elements of the scientific process: meth-
ods, reporting and dissemination, reproducibility, evaluation and incentives. There is some evidence from both simulations and
empirical studies supporting the likely effectiveness of these measures, but their broad adoption by researchers, institutions,
funders and journals will require iterative evaluation and improvement. We discuss the goals of these measures, and how they
can be implemented, in the hope that this will facilitate action toward improving the transparency, reproducibility and efficiency
of scientific research.



GENOMICS

Unrealistic expectations and uncritical

- - - ~translation of genetic discoveries may
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preventing disease and improving health.
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What Happens When Underperforming Big Ideas
in Research Become Entrenched?
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SCIENCE AND COMPLEXITY

By WARREN WEAVER
Rockefeller Foundation, New York City

"Science and Complexity", American Scientist, 36: 536 (1948).
Based upon material presented in Chapter 1' "The Scientists Speak," Boni & Gaer Inc.,1947. All rights
reserved.
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Perspective: Sloppiness and emergent theories in physics, biology,
and beyond
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As a young physicist, Dyson paid a visit to Enrico Fermi'
(recounted in Ditley, Mayer, and Loew?). Dyson wanted to
tell Fermi about a set of calculations that he was quite excited
about. Fermi asked Dyson how many parameters needed to be
tuned in the theory to match experimental data. When Dyson
replied there were four, Fermi shared with Dyson a favorite
adage of his that he had learned from Von Neumann: “‘with four
parameters I can fit an elephant, and with five I can make him
wiggle his trunk.” Dejected, Dyson took the next bus back to
Ithaca.
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We noted previously that the characteristic eigenvalue
spectrum of the FIM suggests a simpler, lower-dimensional
“theory” embedded within larger, more complex “models,” and
in this section, we make this notion explicit. We will see that
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Indeterminacy of Reverse Engineering of Gene
Regulatory Networks: The Curse of Gene Elasticity

Arun Krishnan'#, Alessandro Giuliani®, Masaru Tomita'

1Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan, 2 Istituto Superiore di Sanita, Environment and Health Department, Rome, Italy
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Cancer attractors: A systems view of tumors from a gene network dynamics and
developmental perspective

Sui Huang®*, Ingemar Ernberg®, Stuart Kauffman?

2 Institute for Biocomplexity and Informatics, Biological Sciences Bldg, University of Calgary, 2500 University Drive, Calgary AB, Canada
b Dept of Microbiology, Tumor and Cell Biology (MTC) Karolinska Institutet, Box 280, 171 77 Stockholm, Sweden

COMPLEX NETWORK (N gene genome)
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RESEARCH ARTICLE
Cell Fate Decision as High-Dimensional Critical
State Transition
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‘Del rigor en la ciencia’

Jorge Luis Borges

In quell'impero, I'Arte della Cartografia raggiunse una tale Perfezione che la
mappa di una sola provincia occupava tutta una Citta e la mappa dell'Impero tutta
una Provincia. Col tempo codeste Mappe Smisurate non soddisfecero e i Collegi dei
Cartografi eressero una mappa dell'Impero che uguagliava in grandezza I'lmpero e
coincideva puntualmente con esso. Meno Dedite allo studio della cartografia, le
Generazioni Successive compresero che quella vasta Mappa era inutile e non senza
Empieta la abbandonarono alle Inclemenze del Sole e degl'Inverni. Nei deserti
dell'Ovest rimangono lacere rovine della mappa, abitate da Animali e Mendichi; in
tutto il paese non e altra reliquia delle Discipline Geografiche. (Suarez Miranda,
Viaggi di uomini prudenti, libro quarto, cap. XLV, Lérida, 1658)



