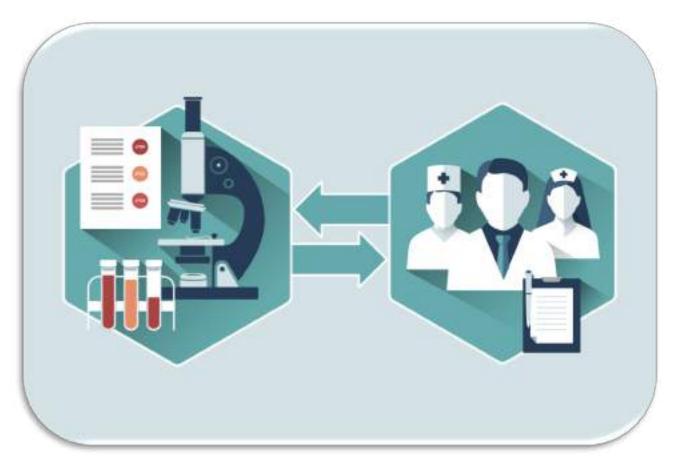


Technology Transfer Webinar - TT Webinar 3 Dicembre 2020

L'ANTIBIOFILMOGRAMMA: IL TRASFERIMENTO DEI RISULTATI DELLA RICERCA NELLA PRATICA CLINICA

Enea G. Di Domenico



TRANSLATIONAL RESEARCH: FROM BENCHSIDE TO BEDSIDE

Translation of the achievements of basic science into everyday clinical practice

THE ANTIBIOTIC RESISTANCE CRISIS

ANNOUNCEMENT

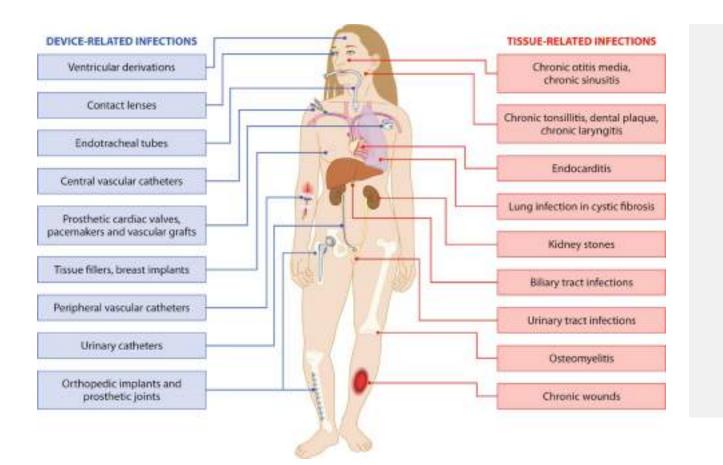
The rapid emergence of resistant bacteria is occurring worldwide

Cost per patient range from \$18,588 to \$29,069

Mortality rates due to multidrug-resistant organisms are approximately 30%

More than 700,000 people die each year due to MDR

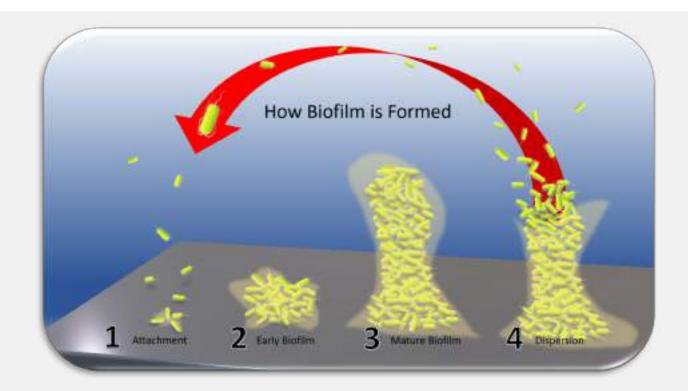
MICROBIAL BIOFILM


Biofilms pose a serious problem for public health because of the increased resistance to antibiotics

An additional resistance mechanism that escapes conventional clinical analysis

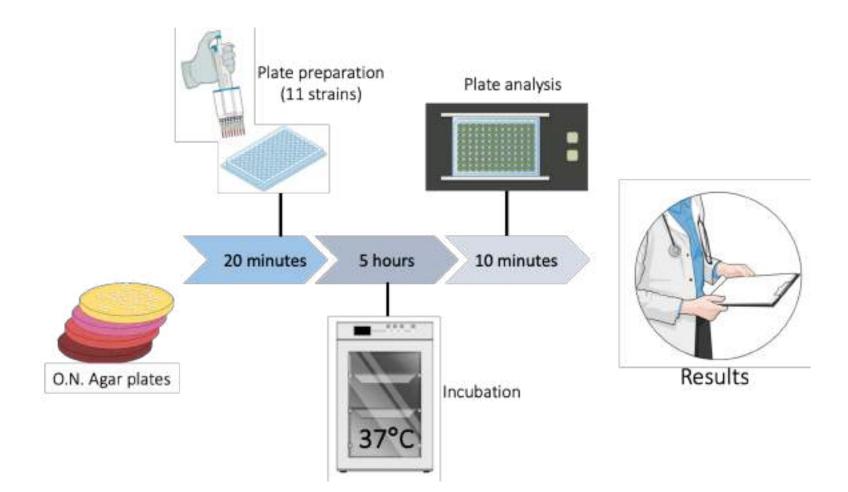
BIOFILMS ARE PRESENT IN MORE THAN 80% OF ALL HUMAN INFECTIONS

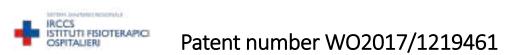
The total annual cost for biofilm infections in the USA is \$94 billion, with more than half a million deaths

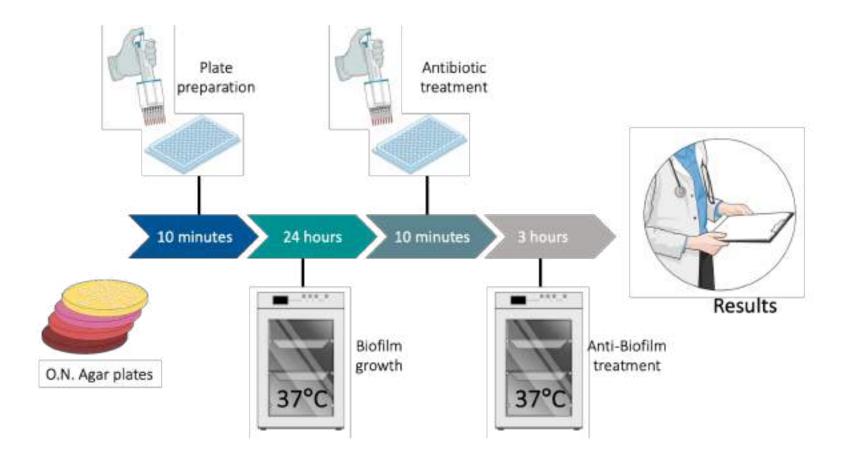


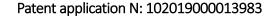
ANTIBIOTIC PROFILING ON BIOFILM-GROWING BACTERIA

AN UNMET CLINICAL NEED


Antibiograms are performed on planktonic cells and do not take into account biofilm-production




clinical BIOFILM RING TEST[®] (cBRT)



ANTIBIOFILMOGRAMMA (BIOFILM SUSCEPTIBILITY TEST - BST)

WHY IT MATTERS

TOLERANCE TO ANTIBIOTICS IS DIRECTLY RELATED TO THE LEVEL OF BIOFILM

Antibiotics	S. aureus (High)			<i>S. aureus</i> (Moderate)				S. aureus (Weak)					
	MIC (m	ig/L)	BMIC (mg/L)		MIC (mg/L)		BMIC (mg/L)		MIC (mg/L)		BMIC (mg/L)		
Clindamycin	0.5	R	>1	R	0.25	S	0.5	R	0.25	S	0.125	S	
Daptomycin	0.5	S	1	S	1	S	>4	R	0.5	S	1	S	
Erythromycin	≤0.25	S	>4	R	0.5	S	1	R	0.5	S	≤1	S	
Fusidic Acid	≤0.5	S	>1	R	≤0.5	S	≤125	S	≤0.5	S	≤0.125	S	
Gentamicin	≤0.5	S	>4	R	≤0.5	S	>4	R	≤0.5	S	0.125	S	
Levofloxacin	0.25	S	>4	R	0.25	S	2	R	≤0.12	S	0.12	S	
Oxacillin	≤0.25	S	≤0.25	S	0.5	S	1	S	0.5	S	0.5	S	
Rifampicin	≤0.03	S	1	R	≤0.03	S	0.125	S	≤0.03	S	0.0625	S	
Teicoplanin	≤0.5	S	2	R	≤0.5	S	1	S	≤0.5	S	0.25	S	
Tigecyclin	≤0.12	S	>0.5	R	≤0.12	S	>0.5	R	≤0.12	S	≤0.0625	S	
TMP/SMX	≤10	S	>4	R	≤10	S	>4	R	≤10	S	>4	R	
Vancomycin	1	S	>4	R	1	S	>4	R	1	S	1	S	
Resistance (%)		8%		83%		0%		67%		0%		<mark>8%</mark>	
		HIGH				MODERATE				WEAK			

MIC: Minimum Inhibitory Concentration BMIC: Biofilm Minimal Inhibitory Concentration

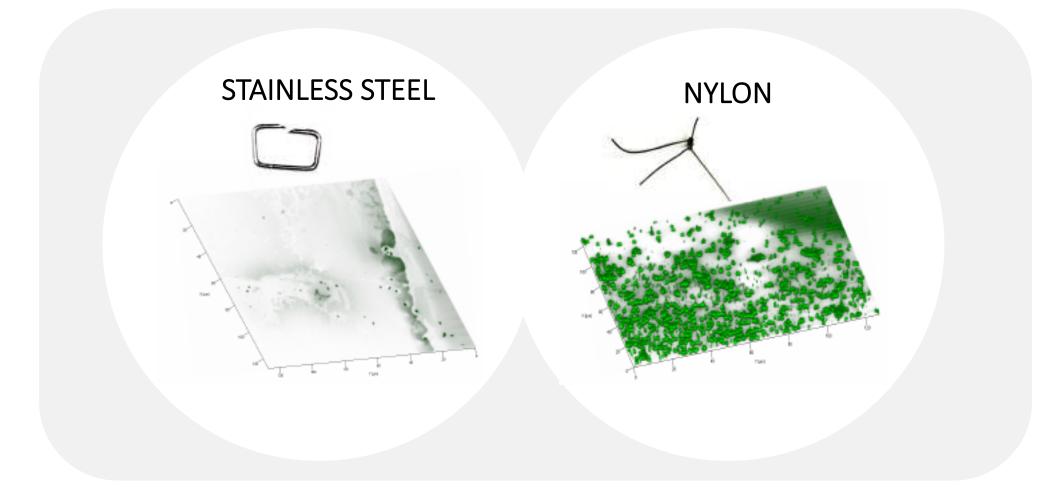
"Translation of the achievements of basic science..."

BIOFILM-ASSOCIATED SURGICAL SITE INFECTIONS

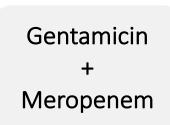
78-Year-old woman with oral cancer

Tracheostomy over the second tracheal ring

Pectoralis major flap for reconstructive head and neck surgery


Surgical site infection by: *Staphylococcus aureus Pseudomonas aeruginosa*

BIOFILM ON SUTURE

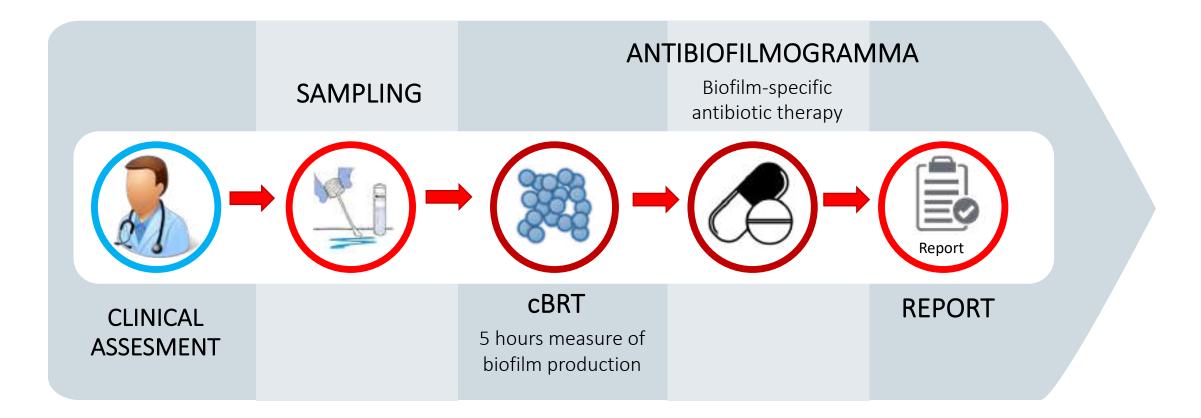


CO-INFECTION BY S. aureus AND P. aeruginosa

	I.D.: XXX Sig. XXX				Sesso F		MICROBIOLOGIA					
	Data di Nascita:	Età: 78 Anr	ni	PROVENIENZ	A: OTORINO Materiale: TAMPONE ULCERA							
STRAIN:		coccus aur	eus		Pseudomonas aeruginosa							
RESULT:		Moderate l	biofilm pro	ducer			High biofilm producer					
	Antimicrobials	MIC (mg/L)	INT	BMIC (mg/L)	INT	Antimicrobials	MIC (mg/L)	INT	BMIC (mg/L)	INT		
	Benzilpenicillin	> 0.5	R	> 8	R	Amikacin	≤2	S	≤ 2	S		
	Clindamycin	≤ 0. 25	S	> 2	R	Cefepime	≤1	S	> 32	R		
	Daptomycin	≤ 0. 50	S	4	R	Ceftazidime	4	S	32	R		
	Erythromycin	> 2	R	4	R	Ciprofloxacin	≤ 0.25	S	> 2	R		
	Fusidic Acid	≤ 0,5	S	≤1	S	Gentamicin	≤1	S	1	S		
	Gentamicin	≤1	S	1	S	Imipenem	2	I.	> 16	R		
	Linezolid	2	S	1	S	Meropenem	1	S	> 16	R		
	Oxacillin	> 2	R	> 2	R	PIT	8	S	> 128	R		
	Rifampicin	-	-	≤ 0.06	S		illin/Tazoba					
	Teicoplanin	≤ 0,5	S	4	R	TMP/SN	/IX = Trimet	hoprim/Sul	famethoxazo	le		
	Tigecycline	0.25	S	0.25	S							
	TMP/SMX	≤ 10	S	≤ 10	S							
	Vancomycin	≤ 0,5	S	2	S							

Daptomycin
+
Meropenem

EUCAST Clinical breakpoints - bacteria (v 9.0)



DEVELOPMENT OF INNOVATIVE STRATEGIES FOR THE TREATMENT OF BIOFILM INFECTIONS

VALIDATION STUDIES

to lanest land of

Welecader Schewcer

Arrist

The Emerging Role of Microbial **Biofilm in Lyme Neuroborreliosis**

Ence Diro () Domentor", Anto Cavallo", Valorithe Bandgroot", Giocome () Agento", Martine Pontone", Clischette Tranto", Marte Terese Gelle", Grante Prignano", Fulste Personalt", Later Tonia 7 and Falstein Rissel

Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype

Eners Gian Di Domenico 7.4, Haris Esculta 7, Grania Prignant 7, Maria Toorra Galle 7, Mathee Vespaniani ¹, Basia Cavallo ¹, Inshella Speeduti ², Martina Postner ¹, Valentina Bonfignen¹, Lanco CIBI¹, Alexeandra De Santo¹, Eableda Di Salvo¹, Fabria Pergineth¹, Bata Lesenni La Parila³, Laigi Toma⁴ and Fabricio Escoli⁴

BMCInfectious Decesses

30

Trontiers 2

in Microhiology

macrophages

Luce Cavinato, Elena Gentee, Francesco Henato Luty,

Enna Gloo D. Domenton, Faula Del Porto and Planendria Assensatori

Escaping the phagocytic oxidative

burst: role of SODB in the survival

of Pseudomonas aeruginosa within

Name of all Stationary Designs 2010 (0.00) Republication (1.00) (0.0) (0.0)

RELEASON ARTICLE

Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia

Baster Romail ""m, Line Kan-Andres Base"", Free Gite Dr Domenical, Martianey Math., 1998 (Stremmt) tong Merter¹¹¹¹¹¹, Manuala die Publice¹¹, Paridia Wa/dec¹²¹⁰¹¹ and Maku Ecoretice¹³

frontiers in Microbiology Development of an in vitro Assay,

Based on the BioFilm Ring Test[®], for **Rapid Profiling of Biofilm-Growing** Bacteria

Ense G. Di Domentor", Lugi Tome", Chroker Provof", Fiorertine Ascenators", hadeila Spendull", Grazie Prignans", Marte T. Gollo", Pulvie Pimpinell", Velentine Bordynon*, Therry Bernardt* and Fabrizio Encoli*

REPRAISING ANTICLU

The clinical Biofilm Ring Test: a promising tool for the clinical assessment of biofilm-producing Candida species

Ents Gra Di Demenico^{1,14}, Eata Caralla¹, Maria Cornibe¹, Oracia Prignano", Maria Terena Gallo", Valentina Boolignon", Giovanna D'Agosta¹, Isobella Spaributi¹, Luigi Torea¹ and Pabricio Esseill²

Silver Sulfadiazine Eradicates Antibiotic-Tolerant Staphylococcus aureus and Pseudomonas aeruginosa **Biofilms in Patients with Infected Diabetic Foot Ulcers**

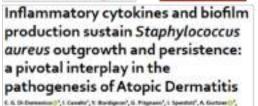
Ency Grow III (Press now 1990), Reduces De Angelio 50, Davis Cavallo 7, Francesco Sievert Entricis Otherali 100, Margarida Fornandor Lopez Morsin U Autilia 7, Chiara Di Segui 7, Febre Gentle 12: Maria Glevenia Schill¹, Auguste Orianil ¹⁰, Clevenia D'Agoste ¹ Eductedus Teenie V. Diseleta Ratano V. Ginegia Cardinati V. Americania Notivelle V Tetana Keudriarteeta ⁶, Gunta Prigenee ⁶, Esbria Propiecifi ⁶, Enris Loneni La Paesta ⁶ Lobid Tame 7, Velovie Cowell 12 and Fabricia Equal 12

frontiers. in Celtular and Infection Microbiology

Springer

Biofilm Production as a Risk Factor and Predictor of Mortality for Carbapenem-Resistant Klebsiella pneumoniae in oncological patients

MC Mondation (2010-1014)


RESUMBCH ANTICLE

Enes Giro Dr Demantics", Karle Cavallo', Processa Svent', Grazis Prighano', Isabella Spentusti, Prancesco Manchesi/, Fusika Prograesi/, Campalina Proneett', Linska Penggali/, Lolgi Temal, Andrea Murgarelii! Assunts De Lora', Fahreis Eneol?

BMC Microbiology

Other Arrest

Biofilm Producing Salmonella Typhi:

Positively charged biopolymeric nanoparticles

for the inhibition of Pseudomonas aeruginosa biofilms

Chronic Colonization and Development of

nature

SCIENTIFIC REPORTS

E. Trento', L. Torne', F. Pirepirutif, B. Capitante' & P. Erentf'

enables been de

Molecular Soloicer

Gallbladder Cancer

Recipi

Rubetale Reads

I have not first 2000 in the

REALASCH PAPER

EXCHANGE AND ADDRESS AND ADDRE

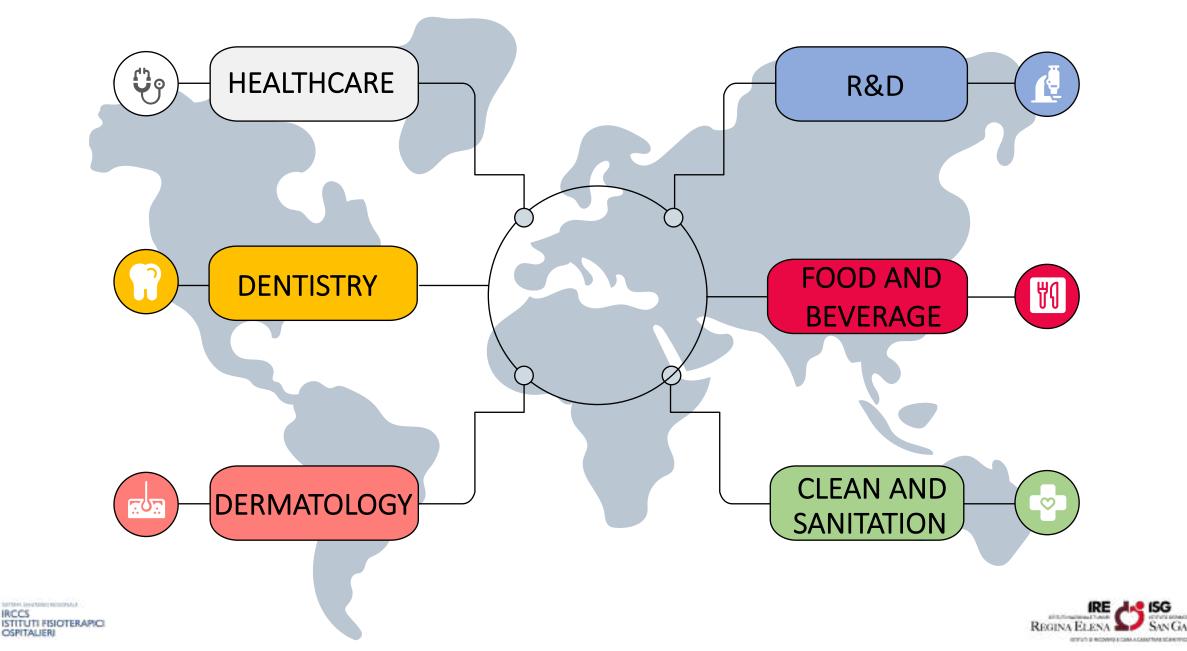
Staphylococcus aureus and the cutaneous microbiota

biofilms in the pathogenesis of atopic dermatitis

Ecca Gins Di Domenicy', Baris Cavelle', Brann Capitanie', Eleventina Ascension!', Fubria Fingianily, Alde Marrane', Pabricia Enad?'

ORIGINAL RESEARCH ARTICLE Front. Cell. Infect. Microbiol. | doi: 10.3389//cimb.2020.561741

Biofilm Production by Carbapenem-Resistant Klebsiella pneumoniae significantly increases the risk of death in oncological patients


Enea Gino Di Domenico¹⁷, Ilaria Cavallo², Francesca Sivori², Francesco Marchesi³, Grazia Prignano², Fulvia Pimpinelli², Isabella Sperduti⁴, Lorella Pelagalli³, Fabiola Di Salvo⁴, Ilaria Celesti⁸, Silvia Paluzzi², Carmelina Pronesti⁷, Fiorentina Ascenzioni⁸, Luigi Toma⁹, Assunta De Luca¹⁰, Andrea Mengarelli³ and Fabrizio Ensoli²

"...the presence of strong biofilm-producing Carbapenem-resistant K. pneumoniae (CRKP) significantly increases the risk of death in oncological patients. Thus, the assessment of biofilm production may provide a key element in supporting the clinical management of high-risk oncological patients with CRKP infection."

FIELDS OF APPLICATION

SAN GALLICAND

IRCCS

OSPITALIERI

CONCLUSIONS

01

The strength of biofilm production is a key risk factor affecting the efficacy of antimicrobial therapy

The assessment of biofilm combined with antibiotic profiling may help direct the therapeutic intervention and improve the clinical outcome BST represents a promising tool to predict the clinical outcome of antibiotic therapy

Microbiology and Virology San Gallicano Institute I.F.O. Istituti Fisioterapici Ospitalieri

THANKS!

Do you have any questions?

enea.didomenico@ifo.gov.it

